Skip to main content

Weave devient Apache Twill et entre en incubation



Ceux qui s'intéressent à YARN, le nouveau gestionnaire de ressources d'Hadoop, savent que son potentiel est énorme pour ceux qui font du BigData : spécifiez les ressources nécessaires à votre programme distribué (CPU, mémoires) et YARN se charge de trouver les nœuds de votre cluster possédant les ressources disponibles pour l’exécuter. Le tout bien entendu sur les pétaoctets hébergés par le système de fichier distribué d'Hadoop : HDFS.
Emporté par la dynamique Hadoop YARN est en train de devenir le socle de nombreux projets de traitement de gros volumes données : on retrouve le traditionnel Map/Reduce mais aussi Storm porté par Yahoo ! ou Stinger d'Hortonworks pour faire du SQL à (très) grande échelle

Cependant écrire un programme qui exploite les capacités de YARN n'est pas une sinécure, on se retrouve vite à copier / coller l'exemple du DistributedShell, à refaire les mêmes choses et à retomber dans les mêmes problématiques ... bref inutile d'être un génie pour comprendre qu'il y avait matière à factoriser.

Il y avait Kitten de chez Cloudera, voici celle de Continuuity, Weave, jusqu'ici hébergée chez Github qui vient d'être acceptée par la fondation Apache pour incubation. Au passage il change de nom et devient Twill histoire de ne pas le confondre avec Apache Wave (plateforme de travail collaborative, pas grand chose à voir avec le BigData)
L'idée derrière Weave Twill est donc bien de simplifier le développement d'applications distribuées qui reposent sur YARN en offrant par exemple une interface WeaveRunnable tel que le fait le JDK avec l'interface Runnable sauf qu'il ne s'agit plus de fonctionner au sein d'un pool de thread mais de passer à l'échelle supérieure : le pool de serveurs (physique).
Weave tente aussi de simplifier la gestion de l'application comme par exemple la gestion des logs qui est toujours délicate lorsque l'on a affaire à des applications qui s’exécutent sur plusieurs machines.

Si vous avez commencé à jouer avec YARN jetez un coup d’œil à Weave.

Les alternatives potentielles :
Kitten
Spring YARN

Comments

Popular posts from this blog

Orientée colonnes ?

Les bases NoSQL sont arrivées avec leur cortège de nouveautés et pour certaines d'entre elles une notion héritée de BigTable : celle de base de donnée orientée colonne. Cependant faire le lien entre l'article de Wikipedia et comprendre ce que permet réellement un base de donnée comme HBase n'est pas une chose évidente. En effet le simple fait de définir cette notion ne suffit pas toujours a bien comprendre quels sont les principes de conception du monde SQL qui peuvent être oubliés et ceux qui doivent être appris. Colonne or not colonne ? Prenons un modèle très simple de donnée et essayons de le transposer dans un modèle "orienté colonne": Comme on peut le voir on est passé d'un modèle à 2 dimensions (ligne x colonne) vers un modèle où une valeur est accédée au travers de 2  coordonnées qui sont ici (ligne, colonne) Cette notion de coordonnées est  importante  (c'est pour ça que je la met en gras 2 fois de suite) si l'on veut c...

HBase + Subversion + Eclipse + Windows

HBase + Subversion + Eclipse + Windows (it should be easy to adapt for Linux) Update : please note that since HBase-4336 / HBase 0.96 the source tree is split in more than one Maven module this post is no more relevant, i have created a new post on this subject : http://michaelmorello.blogspot.fr/2012/06/hbase-096-eclipse-maven.html This is a simple setup in order to play with the source code of HBase under Microsoft Windows. Since HBase use some Unix specific commands like chmod the only requirements here are  Cygwin and a working Maven 3 environment. (It is obvious that you need Java and Eclipse , but you DON'T need anything else like the Eclipse Maven plugin or any SSH configuration) 1. Checkout the source code The first step is to check out the source code from the Subversion repository. I did it under my cygwin home repository. In this example i want to play with the 0.90 branch : svn co http://svn.apache.org/repos/asf/hbase/branches/0.90/ hbase-...

Row Count : HBase Aggregation example

With the coprocessors HBase 0.92 introduces a new way to process data directly on a region server. As a user this is definitively a very exciting feature : now you can easily define your own distributed data services. This post is not intended to help you how to define them (i highly recommend you to watch this presentation if you want to do so) but to quickly presents the new aggregation service shipped with HBase 0.92 that is built upon the endpoint coprocessor framework. 1. Enable AggregationClient coprocessor You have two choices : You can enable aggregation coprocessor on all your tables by adding the following lines to hbase-site.xml : <property> <name>hbase.coprocessor.user.region.classes</name> <value>org.apache.hadoop.hbase.coprocessor.AggregateImplementation</value> </property> or ...you can enable coprocessor only on a table throught the HBase shell : 1. disable the table hbase> disable ' mytable ' 2....